Suggested further readings
Contents
Suggested further readings¶
Overview¶
Bertsekas, D. P. (1995). Dynamic programming and optimal control. MA: Athena scientific.
Foundations¶
Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34-37. doi: 10.1126/science.153.3731.34 .
Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical population biology, 9(2), 129-136.
Doyle, J. C. (1978). Guaranteed margins for LQG regulators. IEEE Transactions on automatic Control, 23(4), 756-757. (Abstract is definitely worth reading.)
Kalman, R. E. (1960). Contributions to the theory of optimal control. Bol. soc. mat. mexicana, 5(2), 102-119.
Control as Inference¶
Kappen, H. J., Gómez, V., & Opper, M. (2012). Optimal control as a graphical model inference problem. Machine learning, 87(2), 159-182. doi: 10.1007/s10994-012-5278-7 .
Todorov, E. (2009). Efficient computation of optimal actions. Proceedings of the national academy of sciences, 106(28), 11478-11483. doi: 10.1073/pnas.0710743106 (postprint: europepmc.org/articles/pmc2705278?pdf=render
).
Intro¶
Castro, L. N. G., Hadjiosif, A. M., Hemphill, M. A., & Smith, M. A. (2014). Environmental consistency determines the rate of motor adaptation. Current Biology, 24(10), 1050-1061. doi: 10.1016/j.cub.2014.03.049 .
Smith, M. A., Brandt, J., & Shadmehr, R. (2000). Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature, 403(6769), 544-549. doi: 10.1038/35000576 (postprint: www.seas.harvard.edu/motorlab/Reprints/nature00.pdf
).
Sing, G. C., Joiner, W. M., Nanayakkara, T., Brayanov, J. B., & Smith, M. A. (2009). Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron, 64(4), 575-589. doi: 10.1016/j.neuron.2009.10.001 .
Wagner, M. J., & Smith, M. A. (2008). Shared internal models for feedforward and feedback control. Journal of Neuroscience, 28(42), 10663-10673. doi: 10.1523/JNEUROSCI.5479-07.2008 .
Outro¶
Bautista, L. M., Tinbergen, J., & Kacelnik, A. (2001). To walk or to fly? How birds choose among foraging modes. Proceedings of the National Academy of Sciences, 98(3), 1089-1094. doi: 10.1073/pnas.98.3.1089 (postprint: www.ncbi.nlm.nih.gov/pmc/articles/PMC14713
).
Ralston, H. J. (1958). Energy-speed relation and optimal speed during level walking. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie, 17(4), 277-283. doi: 10.1007/BF00698754 .
Shadmehr, R., & Ahmed, A. A. (2020). Vigor: Neuroeconomics of movement control. MIT Press.
Xu-Wilson, M., Zee, D. S., & Shadmehr, R. (2009). The intrinsic value of visual information affects saccade velocities. Experimental Brain Research, 196(4), 475-481. doi: 10.1007/s00221-009-1879-1 (postprint: europepmc.org/articles/pmc2771693?pdf=render
).
Yoon, T., Geary, R. B., Ahmed, A. A., & Shadmehr, R. (2018). Control of movement vigor and decision making during foraging. Proceedings of the National Academy of Sciences, 115(44), E10476-E10485. doi: 10.1073/pnas.1812979115 (postprint: europepmc.org/articles/pmc6217431?pdf=render
).
Yoon, T., Jaleel, A., Ahmed, A. A., & Shadmehr, R. (2020). Saccade vigor and the subjective economic value of visual stimuli. Journal of neurophysiology, 123(6), 2161-2172. doi: 10.1152/jn.00700.2019 .